首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   342篇
  免费   76篇
  国内免费   6篇
  2024年   1篇
  2022年   3篇
  2021年   9篇
  2020年   2篇
  2019年   5篇
  2018年   4篇
  2017年   10篇
  2016年   18篇
  2015年   19篇
  2014年   14篇
  2013年   66篇
  2012年   10篇
  2011年   11篇
  2010年   16篇
  2009年   16篇
  2008年   16篇
  2007年   22篇
  2006年   13篇
  2005年   17篇
  2004年   15篇
  2003年   24篇
  2002年   21篇
  2001年   22篇
  2000年   7篇
  1999年   17篇
  1998年   9篇
  1997年   5篇
  1996年   5篇
  1995年   4篇
  1994年   4篇
  1993年   7篇
  1992年   4篇
  1990年   3篇
  1989年   2篇
  1985年   1篇
  1983年   1篇
  1974年   1篇
排序方式: 共有424条查询结果,搜索用时 15 毫秒
41.
In many practical manufacturing environments, jobs to be processed can be divided into different families such that a setup is required whenever there is a switch from processing a job of one family to another job of a different family. The time for setup could be sequence independent or sequence dependent. We consider two particular scheduling problems relevant to such situations. In both problems, we are given a set of jobs to be processed on a set of identical parallel machines. The objective of the first problem is to minimize total weighted completion time of jobs, and that of the second problem is to minimize weighted number of tardy jobs. We propose column generation based branch and bound exact solution algorithms for the problems. Computational experiments show that the algorithms are capable of solving both problems of medium size to optimality within reasonable computational time. © 2003 Wiley Periodicals, Inc. Naval Research Logistics 50: 823–840, 2003.  相似文献   
42.
In this paper, we derive new families of facet‐defining inequalities for the finite group problem and extreme inequalities for the infinite group problem using approximate lifting. The new valid inequalities for the finite group problem include two‐ and three‐slope facet‐defining inequalities as well as the first family of four‐slope facet‐defining inequalities. The new valid inequalities for the infinite group problem include families of two‐ and three‐slope extreme inequalities. These new inequalities not only illustrate the diversity of strong inequalities for the finite and infinite group problems, but also provide a large variety of new cutting planes for solving integer and mixed‐integer programming problems. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   
43.
用拖动电流确定气缸压缩压力的试验研究   总被引:1,自引:0,他引:1  
从理论上分析了拖动时发动机缸内气体压力、漏气、惯性力及摩擦等因素对发动机力矩的影响及拖动电流与气缸压缩压力的关系,并在此基础上做了大量试验,利用一元线性回归分析的方法处理试验数据,得到了拖动电流和压缩压力的经验关系式,验证表明,用此公式检测气缸压力精度在48%以内,而且操作简单,能够达到快速检测压缩压力的目的。  相似文献   
44.
Mean residual life is a useful dynamic characteristic to study reliability of a system. It has been widely considered in the literature not only for single unit systems but also for coherent systems. This article is concerned with the study of mean residual life for a coherent system that consists of multiple types of dependent components. In particular, the survival signature based generalized mixture representation is obtained for the survival function of a coherent system and it is used to evaluate the mean residual life function. Furthermore, two mean residual life functions under different conditional events on components’ lifetimes are also defined and studied.  相似文献   
45.
Today, many products are designed and manufactured to function for a long period of time before they fail. Determining product reliability is a great challenge to manufacturers of highly reliable products with only a relatively short period of time available for internal life testing. In particular, it may be difficult to determine optimal burn‐in parameters and characterize the residual life distribution. A promising alternative is to use data on a quality characteristic (QC) whose degradation over time can be related to product failure. Typically, product failure corresponds to the first passage time of the degradation path beyond a critical value. If degradation paths can be modeled properly, one can predict failure time and determine the life distribution without actually observing failures. In this paper, we first use a Wiener process to describe the continuous degradation path of the quality characteristic of the product. A Wiener process allows nonconstant variance and nonzero correlation among data collected at different time points. We propose a decision rule for classifying a unit as normal or weak, and give an economic model for determining the optimal termination time and other parameters of a burn‐in test. Next, we propose a method for assessing the product's lifetime distribution of the passed units. The proposed methodologies are all based only on the product's initial observed degradation data. Finally, an example of an electronic product, namely contact image scanner (CIS), is used to illustrate the proposed procedure. © 2002 Wiley Periodicals, Inc. Naval Research Logistics, 2003  相似文献   
46.
In this article, the Building Evacuation Problem with Shared Information (BEPSI) is formulated as a mixed integer linear program, where the objective is to determine the set of routes along which to send evacuees (supply) from multiple locations throughout a building (sources) to the exits (sinks) such that the total time until all evacuees reach the exits is minimized. The formulation explicitly incorporates the constraints of shared information in providing online instructions to evacuees, ensuring that evacuees departing from an intermediate or source location at a mutual point in time receive common instructions. Arc travel time and capacity, as well as supply at the nodes, are permitted to vary with time and capacity is assumed to be recaptured over time. The BEPSI is shown to be NP‐hard. An exact technique based on Benders decomposition is proposed for its solution. Computational results from numerical experiments on a real‐world network representing a four‐story building are given. Results of experiments employing Benders cuts generated in solving a given problem instance as initial cuts in addressing an updated problem instance are also provided. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   
47.
轻质复合材料及其结构以其优异的力学性能在航天航空飞行器上得到了广泛应用。考察玻璃纤维/环氧复合材料方形截面桁架在典型弯曲载荷工况条件下的非线性结构承载性能。采用Isight集成平台对桁架结构进行多参数优化设计,获得满足结构刚度和承载性能要求的最轻质桁架结构的几何参数,并分析最优化结构在载荷作用下的结构非线性响应行为。结果表明采用Isight平台对桁架结构进行多参数优化设计具有较高的效率和可信度。  相似文献   
48.
49.
Instead of measuring a Wiener degradation or performance process at predetermined time points to track degradation or performance of a product for estimating its lifetime, we propose to obtain the first‐passage times of the process over certain nonfailure thresholds. Based on only these intermediate data, we obtain the uniformly minimum variance unbiased estimator and uniformly most accurate confidence interval for the mean lifetime. For estimating the lifetime distribution function, we propose a modified maximum likelihood estimator and a new estimator and prove that, by increasing the sample size of the intermediate data, these estimators and the above‐mentioned estimator of the mean lifetime can achieve the same levels of accuracy as the estimators assuming one has failure times. Thus, our method of using only intermediate data is useful for highly reliable products when their failure times are difficult to obtain. Furthermore, we show that the proposed new estimator of the lifetime distribution function is more accurate than the standard and modified maximum likelihood estimators. We also obtain approximate confidence intervals for the lifetime distribution function and its percentiles. Finally, we use light‐emitting diodes as an example to illustrate our method and demonstrate how to validate the Wiener assumption during the testing. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   
50.
战场空间本体构建方法研究   总被引:4,自引:1,他引:3  
从构建战场空间知识基础设施,进而形成一体化的知识处理平台、获取知识优势出发,将本体思想引入战场空间知识建模领域,提出了战场空间本体体系,即战场空间本体包括上层本体、领域本体、应用本体;并重点研究了一种战场空间领域本体的构建方法BOC,包括基于上层本体BUO的领域本体构建方法,基于上层本体BUO的领域本体合并方法.基于本体的战场空间知识建模从根本上解决了战场空间中知识系统之间的知识共享和重用问题,便于知识系统的集成.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号